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Abstract
It is well-known that vibronic interactions can be modelled in terms of an
effective Hamiltonian incorporating first and second-order reduction factors
(RFs), particularly when analysing the spectroscopic properties. Measurements
and calculations of the RFs as a function of the strength of vibronic coupling are
therefore of much interest. In this paper, we develop a new general method for
determining second-order RFs (soRFs) from the strength of the Jahn–Teller (JT)
coupling for systems in which electron orbital degeneracy or pseudo-degeneracy
exists. These include in particular the fullerene molecule C60, pseudo-Jahn–
Teller molecules and impurity centres in crystals. In order to calculate the
important soRFs for intermediate to strong coupling, it is necessary to determine
non-Condon corrections to the strong coupling values obtained using the
Franck–Condon (FC) approximation. This gives an additional contribution
to the nuclear polarizability of the system, thus enabling the electrons to
follow the nuclear vibrations. These non-Condon corrections are derived using
perturbation theory and are found to be inversely proportional to the square of
the JT energy. The validity of the approximation is first tested in the cubic
T ⊗ t2 JT system due to its relative simplicity. It is found that the results are
closer to those obtained earlier by numerical methods than the analytical FC
values alone. Results are then presented that are applicable to C−

60 anions.
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1. Introduction

During the last decade, there have been numerous investigations on the role played by
vibronic coupling between the electrons and the nuclei in determining many of the electronic
properties of crystals and molecules. This coupling is most commonly observed in
spectroscopic experiments (such as optical absorption and emission, infrared spectroscopy,
electron paramagnetic resonance) [1, 2] and is usually described as a Jahn–Teller (JT) effect. It
is especially important in high-symmetry systems such as those arising in cubic and icosahedral
environments as they frequently contain orbitally degenerate electronic states. The effect of this
coupling in the latter systems is usually observed through the sizes and character of many of the
electronic perturbations that may also be present. Many calculations have been undertaken to
highlight these vibronic effects in the fullerenes and in C±

60 ions in particular [3]. For example,
analytical methods have been used to calculate the effects of this interaction in these systems
which frequently show degenerate electronic ground states of T , G or H symmetries [4–7].

A recent review of JT effect theory highlighting application to molecular problems has been
given by Bersuker [8]. Many examples of the results obtained in cubic and icosahedral systems
are discussed in detail. Much of our understanding is based on quantum mechanical principles
involving effective Hamiltonians as they frequently form a bridge between experimental and
theoretical investigations. Of particular relevance to this study are then the vibronic reduction
factors (RFs); those of first-order (foRF) are relatively simple to calculate and to measure
directly by experiment but those of second-order (soRF), which are derived from using second-
order perturbation theory,generally involve coupling to an infinite set of excited vibronic states.
They are consequently much more difficult to calculate and at the same time their relevance
in experiment is not always readily apparent. Nevertheless, if the required information is
available they often provide much more information than the foRFs about the physics of the
system being investigated. The reason why a lot of attention is focused on the soRFs is that
foRFs can quench the effects of a perturbation drastically as the coupling constant increases.
This is because in intermediate-to-strong coupling the overlap integral decreases rapidly from
unity to zero. In contrast, the overlap integral is not present in soRFs and they can remain
important up to higher values of the coupling constants [2] and usually dominate the terms
involving the foRFs. A second point is that soRFs can introduce terms of different symmetries
into the effective Hamiltonian. However, no new terms are introduced into the effective
Hamiltonian from third or higher orders terms and thus foRFs and soRFs are sufficient in most
cases. The actual parameter of the theory is the ratio of the vibrational quantum to EJT.

Originating from the pioneering work of Ham [9] in 1965, effective Hamiltonians involving
both foRFs and soRFs have been used frequently to help interpret data on a wide range
of vibronic systems. These RFs are constants for a given system and contain within them
the effects of the vibrations of the surroundings. They are usually encountered when the
system is described by an effective Hamiltonian. They appear as constants multiplying purely
electronic operators involved in various perturbations (such as externally applied magnetic
or electric fields, uniaxial stress or random strain). Such constants reflect the symmetry of
both the perturbation and the JT centre itself. The approach frequently used as a first attempt
at modelling experimental data is to treat all RFs as free parameters in a fitting procedure.
However, an important result of theoretical modelling is that these RFs are not truly free
parameters but they are intimately related to the vibronic coupling strength(s), which in turn
are related to the JT energy and the vibrational frequencies. By determining these RFs by
fitting the data obtained from any system to the effective Hamiltonian, they can then be used
in principle to determine the strength of the vibronic coupling provided knowledge of the
analytical expressions for the RF is available for any strength of the vibronic coupling.
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In icosahedral symmetry, expressions for the soRFs have been derived using a shift
transformation method for the T ⊗ h JT system [6] on the assumption that the ground states
with and without the inclusion of vibronic coupling have the same symmetries. Thus only
one linear coupling constant was used. (The role played by the quadratic coupling terms in
this system was merely to localize the system around the minima in the APES and to prohibit
any pseudo-rotation around the trough.) The most important physics of vibronic coupling was
then found through the knowledge of the RFs and particularly those of second order.

Most of the JT centres in insulating or semiconducting systems were identified by
combining the effects of strain with various perturbations through the determination of the
RFs. The soRFs were fundamental to this understanding and identification. It took many
years to reach this achievement in cubic symmetry but icosahedral symmetry still remains at
an early stage of development. This arises because the soRFs have a complicated nature and
also through the lack of sufficiently good interplay between the experimental and theoretical
aspects of the problem.

soRFs have been calculated for the T ⊗ h JT system in intermediate to strong coupling
using a shift transformation (ST) method [6], and in the strong coupling limit using the Franck–
Condon (FC) approximation [10]. In the latter, the soRFs were calculated using the Born–
Oppenheimer approximation in order to extract the adiabatic wavefunctions. The procedures
for determining the soRFs depend critically on the particular JT system and on the vibronic
coupling strength. In the FC method, the major contributions to the soRFs originate from
virtual vertical transitions between the ground and excited vibronic states within the upper
sheets in the APES. In the strong coupling limit, all other transitions may be neglected and the
result is consequently very accurate. The FC results were compared with the strong coupling
limit of the results obtained using the ST method, and satisfactory agreement was obtained.
However, inaccuracies remain in the intermediate to strong coupling regimes in these systems.
The aim of this work is to extend the region of validity by correcting the FC values by using
a non-Condon, non-adiabatic approach in which first-order non-vertical transitions are also
included. To test this correction, we consider, firstly, the well known example of the cubic
T ⊗ t2 JT system. The numerical results of O’Brien [11] and the analytical expressions of
Bates et al [12] for the soRFs including anisotropy will be used to show the validity of this
correction in this simple system from very strong to intermediate vibronic coupling strengths.
The second aim of this paper is to correct the FC values obtained in [10] for T ⊗ h icosahedral
JT systems using the non-Condon correction.

This paper is organized as follows: section 2 introduces the general theory of soRFs and
summarizes the principles involved in the application of the FC method. In section 3, the
non-Condon perturbative method is presented in general terms. The application of the ideas to
the octahedral and tetrahedral T -type states is summarized in section 4 while the non-Condon
corrections applied to icosahedral T ⊗ h JT systems are reported in section 5. Section 6
discusses the results obtained and their application to real systems.

2. The Franck–Condon approximation in the theory of soRFs in orbital triplet JT
systems

The general vibronic Hamiltonian for a JT system consisting of a single electronic T1 orbital
triplet ground state interacting with its immediate surroundings can be written as:

H = 1

2

∑
�γ

(
P2
�γ

µ
+ µω2

�Q2
�γ

)
C0� + V�

∑
γ

Q�γC�γ (1)
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where Q�γ are the collective vibrational coordinates of the surroundings, P�γ are the
corresponding momenta and V� and ω are the coupling constant and oscillator frequency,
respectively. C�γ are the appropriate Clebsch–Gordan (CG) operators transforming like the
row γ of the irreducible representation � such that

C�γ =
∑
σi ,σ j

|T1σi 〉〈T1σ j |〈�γ T1σi |T1σ j 〉 (2)

where σi and σ j are components of T1. The C�γ can be expressed in terms of CG coefficients
〈�γ T1σi |T1σ j 〉 found in [13]. Also C0� is the unit matrix of dimension �. Neglecting the first
term in equation (1), which describes the kinetic energy, the energy of the remaining terms
generates a set of adiabatic potential energy surfaces with corresponding states |i, n〉. The
parameter i labels these surfaces, or sheets, while n gives the number of phonon excitations.

The definition of the soRFs K (2)
M (�l ⊗ �m) involving two perturbations of symmetries �l

and�m can be found in the general theory presented in [14] and outlined in [6]. Their evaluation
within the FC approximation for the icosahedral T1 ⊗h JT system has been described in detail
in [10] and summarized below for a general electronic perturbation having symmetry �. The
corresponding first-order-perturbation Hamiltonian within the orbital T1 state is

H(1)(�l) =
∑
γ

W�γC�γ (3)

where W�γ are coefficients. The sum γ = θ, ε, 4, 5, 6 for coupling to vibrational h-modes,
and γ = 4, 5, 6 for coupling to t2 modes.

Second-order perturbation theory generates a second-order Hamiltonian

H(2)(�l ⊗ �m) = H(1)(�l)G(T1)H(1)(�m) (4)

where the Green operator G(T1) is defined by

G(T1) =
∑
i,n

|i, n〉〈i, n|
�E (i,n)

vert

(5)

where �E (i,n)
vert is the energy measured relative to the ground APES for which i = 0.

In many systems of interest and those to be considered here, the ground APES contains
minima (or wells) labelled p, q, . . .. It is then necessary to take into account all possible
overlaps between the states located in different wells. A convenient procedure is to construct
symmetry-adapted vibronic ground states |0T1σi 〉 derived from projection operator techniques.
This gives a linear combination of the vibrational ground states |ψ ′

p; 0〉 located in the wells
such that

|0T1σi 〉 =
∑

p

α
p
i |ψ ′

p; 0〉. (6)

The prime in the well state |ψ ′
p; 0〉 indicates that these states have been transformed back from

a local oscillator picture for well p to the global frame, and the ‘0’ indicates that the localized
oscillators in the wells are in their ground states. The α p

i are appropriate coefficients. (Full
details of this notation are given in [6] and [15].)

The soRF can then be derived from the relation

K (2)
M (�l ⊗ �m) = 〈0T1σi |L(2)Mµ(�l ⊗ �m)|0T1σ j 〉

(T1σi |L(2)Mµ(�l ⊗ �m)|T1σ j )
(7)

with

L(2)Mµ(�l ⊗ �m) =
∑
γ1,γm

C�lγl G(T1)C�mγm 〈�lγl�mγm|Mµ〉 (8)
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and

L(2)Mµ(�l ⊗ �m) =
∑
γl ,γm

C�lγl C�mγm 〈�lγl�mγm |Mµ〉. (9)

In the above expressions, the label M ∈ �l ⊗�m while the states |T1σi ) are combinations of
pure electronic states obtained from the symmetry-adapted ground states given by equation (6).
We note that in calculations of the soRFs using the ST method of [6], the number of phonon
excitation used was chosen to give a convergent result; 300 phonon excitations were found to
be sufficient for accurate results over the range of coupling strengths considered.

As the FC approximation applies to the infinite coupling limit, we replace the vibronic
well state |ψ ′

p; 0〉 in equation (5) by a product of electronic and nuclear wavefunctions with
the latter function centred at the bottom of the well. The basic ideas can be best understood
in terms of WKB wavefunctions. Detailed calculations given in [10] show that this leads on
to the FC Green operator in which each well is considered separately. The effective virtual
transitions are vertical in a FC diagram. They originate from the vibrational ground state in
one of the wells on the lowest APES and end up at the turning point of the excited vibrational
state of energy nh̄ω associated with another well in an upper sheet lying exactly above the
bottom of the minimum on the lowest sheet. A new Green operator G p(T1) is thus introduced
for well p in the FC approximation where

G p(T1) =
∑

i

|i, p〉〈i, p|
�E (i,p)

vert

. (10)

In equation (10), all overlaps between the wells are neglected and the system is localized in
any one well in this limit. The FC expression for the soRF then becomes

K (2)FC
M (�l ⊗ �m) =

∑
p,q

α
p
i 〈ψ ′p|L(2)p

Mµ (�l ⊗ �m)|ψ ′q〉αq
j

(T1σi |L(2)Mµ(�l ⊗ �m)|T1σ j )
(11)

with the Green operator given by equation (10). The energy�E (i,p)
vert in the Green operator is

independent of the well label p and thus simplifies to �E (i)
vert. In calculating the FC limiting

values of the soRFs, equations (10) and (11) were used. The FC approximation is an accurate
analytical technique in the strong coupling regime. As emphasized in [10, 16] for the octahedral
T ⊗ t2 and icosahedral T ⊗ h JT systems, respectively, the underlying physics is clearly
exposed.

3. The non-Condon perturbative method

The FC approximation is strictly only applicable for the calculation of soRFs in the adiabatic
strong coupling limit such that transitions take place so rapidly that the nuclei do not move
during the transition. The polarizability is then due to the electrons only. Coulomb attraction
between the electrons and the rigid nuclear frame then links the electrons to the rigid lattice.
Therefore the freedom of the electron cloud to distort under external perturbations is limited
by the nuclear frame and thus, by allowing the nuclei to move, we enhance the polarizability
of the molecular system. This is the main improvement we obtain in the theory from such
non-Condon terms.

An alternative description is to suppose that the adiabatic wavefunctions are frozen at the
bottom of the minima. Thus we need only consider a very limited number of electron basis
functions. However, in real systems involving finite coupling strengths, the nuclear frame is
not completely frozen. To include such contributions it is necessary to lift the restriction of
the rigid frame approximation by providing, for example, the electron wavefunctions with an



5314 C A Bates et al

Figure 1. A cross-section of the lowest adiabatic potential energy surface for the T ⊗ t2 JT system
through one of the original wells centred on Q = Q0p . Some non-vertical transitions to excited
vibrational states separated by h̄ωT above the energy gap �Evert arising from the non-Condon
correction are also shown.

additional flexibility by allowing them to follow the nuclear vibrations. This gives rise to the
non-Condon corrections. The physical processes involved are similar to those encountered in
Raman spectroscopy where the electric field part of the perturbation acts simultaneously on
the nuclei frame and electron charge cloud giving rise to a generalized polarizability of the
system. It distorts the electron cloud and moves the nuclei thus providing a coupling between
the electrons and nuclei.

The effect of such non-Condon corrections is to modify the diagram used to illustrate
the standard Franck–Condon approximation. The transitions between the sheets are then no
longer vertical as transitions to excited oscillator states in the wells may occur. This is illustrated
qualitatively in figure 1 for the T ⊗ t2 JT system. It shows transitions from the ground sheet to
the excited sheets supplemented by a number of vibrational levels superimposed on the excited
sheets through the non-Condon correction. Not shown but equally likely are transitions from
excited vibrational levels at energies nh̄ωT above the basis sheet to the excited sheets. Both
sets of transitions take place simultaneously.

The underlying theory for the non-Condon corrections may be deduced by considering
the corrections to all the electronic well states used in equation (11) for the soRF within the FC
approximation to take into account the effect of non-rigidity of the nuclear frame. We first of all
simplify our notation by replacing the general collective coordinate Q�γ in equation (1) by Q j

and define Q j = Q0p as the coordinate of the bottom of the well p. To reach a second-order
contribution, we must correct the states either to first or second order. A correction of first
order may give contributions of odd or even degree of new displacement coordinates defined
by qp measured from the positions of the bottoms of the wells where qp = Q j − Q0p . As we
are interested only in those low energy states close to the bottom of the wells, the amplitudes of
the nuclear displacements from the bottom of the wells are small compared to the average value
of the nuclear displacements (i.e. qp � Q j ). Thus the criterion for smallness comes from the
small deviation qp of the displacement from the bottom of the minimum point. Ideally, we
should include the nuclear motion as a part of the dynamic problem so that the parameter qp

becomes a variable associated with the ground harmonic oscillator state |0〉 in the well p.
It is necessary next to relate these small displacements to the collective coordinates Q j

from a Taylor expansion of the general potential energy U(Q j ) of the system. In the adiabatic
approximation, the nuclear coordinates Q j are free parameters and can be used as a basis for
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the Taylor expansion. Thus we re-write the vibronic Hamiltonian U(Q j ) given in equation (1)
in the general form [2, chapter 3]

U(Q j ) = U(Q0p) + U1 + U2

U1 =
∑

j

[
∂U(Q0p j)

∂Q j

]
Q j =Q0 p

qp

U2 = 1

2

∑
j

∑
j ′

[
∂2U(Q j )

∂Q j∂Q′
j

]
Q j =Q0 p

qpq ′
p.

(12)

In this equation, U1 and U2 are the first- and second-order terms in the potential.
On acting with equation (12) on the ket and bra, corrections to the potential energy of the

system are

U1 =
∑

j

(
µω2 Q0pC0 j + Vj C�γ

)
qp

U2 = µω2C0�qpq ′
p.

(13)

Now U2 is clearly a constant and thus as it cannot admix the ground electronic well state
|ψ ′p〉 with the excited electronic well states |e′p〉 it can be neglected. However, U1 cannot be
neglected. Although it has zero expectation values within the ground electronic well states
|ψ ′p〉 (i.e. 〈ψ ′p|U1|ψ ′p〉 = 0), it admixes the ground electronic well states with the electronic
excited well states |e′p

m 〉 (i.e. 〈ψ ′p|U1|e′p
m 〉 �= 0). This thus gives a correction of the well ground

state such that the new ground state is

|ψ ′p
c 〉 = |ψ ′p〉 + |�ψ1p〉 (14)

where

|�ψ1p〉 =
∑

m

|e′p
m 〉〈ψ ′p|U1|e′p

m 〉
�Evert

. (15)

The non-Condon perturbation thus gives a correction |�ψ1p〉 to the well ground state
proportional to qp. The non-Condon perturbation also gives a similar correction to the two
excited well states, which also involve qp, and mixes the two excited well states. The excited
states are then no longer degenerate. We simplify the problem by excluding the mixing of the
excited well states.

Since the JT systems considered here all involve the orbital triplet terms only, the Green
operator can be simplified by writing it in terms of the ground electronic well state |ψ ′p〉 using
the closure relation as in [16]. However, the orbital operators after the introduction of the
non-Condon correction do not satisfy the closure relation and thus G p(T1) must be replaced
by the standard form of second-order perturbation theory namely:

G p(T1) =
∑

m=1,2

|e′p
m 〉〈e′p

m |
�E p

m
(16)

where �E p
m is the appropriate energy denominator including the non-Condon element. The

general expression for the soRF within the corrected FC approximation thus becomes

K (2)FC
M,corr(�l ⊗ �m) =

∑
p,q

αi
p
〈ψ ′p

c |L(2)p
Mµ,corr(�l ⊗ �m)|ψ ′q

c 〉
(T1σi |L(2)Mµ(�l ⊗ �m)|T1σ j )

α
q
j (17)

in which L(2)p
Mµ,corr(�l ⊗ �m) is now calculated with the corrected Green operator in

equation (16). In this final result, we have terms independent of qp (which are the standard
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FC results) together with the non-Condon correction containing terms which are of order q2
p.

Higher order terms of order q4
p and q2

pq2
p′ may be neglected. We conclude that the standard FC

approximation for the calculation of the soRFs can be obtained directly by using equations (10)
and (11). When the non-Condon corrections are included, the soRFs are given instead by
equation (17).

Before presenting details for specific JT systems, we note that �Evert is proportional to
the JT energy EJT. This in turn is proportional to the inverse square of the linear JT coupling
constant Vj . Thus the non-Condon correction to the standard FC values will be of the order of
the inverse square of JT energy (i.e. of the order of V −4

j ). We also note that, even though all
wells are equivalent to each other and the overlaps between different wells are zero, we have
retained the labels of the individual wells in equation (17) for symmetry reasons.

4. Application to cubic T ⊗ t JT systems

We recall first of all some background information related to these important systems. The
simplest case of a very strong T ⊗ t JT effect in molecular systems is in the molecular cation
of methane (CH+

4). The corresponding details of the chemical bonding and the nature of the
JT effect were reported in 1962 by Snyder [17]. The importance of this molecular system
is in its extensive presence in the so-called methane planets (due to radiolysis of molecular
methane) and, also, in interstellar space. Due to the strong JT effect, the methane cation is an
extreme example of high chemical reactivity, even higher than that of fluorine. In its turn, the
high reactivity provides the ability of the methane cation to initiate the chemical reaction of
polymerization and, in the presence of water and/or ammonium, to produce amino acids and
sugars, the important elements of biochemistry of life.

In the laboratory, many other examples of the JT effect in orbital triplet states are well
known. (See the bibliographic review of Bersuker [18] for further references.) In particular, we
mention substitutional impurity ions in various host crystals. The impurity site invariably has
either octahedral or tetrahedral symmetry. In octahedral symmetry, the triplet usually appears
to involve a stronger coupling to the e-type vibrational modes of the surroundings than to the
t2-type modes. However, this is not the case in tetrahedral symmetry where the situation is
reversed. A possible physical reason for this is that the t2-modes result in a trigonal distortion
along the π bonds in octahedral symmetry, whereas in tetrahedral symmetry the equivalent
distortion is along the σ bonds. The corresponding overlap integrals are consequently smaller
for t2-modes compared to e-modes in octahedral symmetry but larger in the tetrahedral case.
Thus the most likely place to find examples of a T ⊗ t JT system is in III–V and II–VI
semiconductors (such as GaAs, GaP and InP) doped with (3d)n transition metal ions such
as Cr2+, Cr3+, Fe2+ and V3+. Many of these impurities generate deep levels within the
semiconductor band gap, and they frequently form the basis of semi-insulating device material
which has been of significant importance during the last two decades.

We know that GaAs:V3+ has been identified as an example of such a system from an
analysis of the structure observed in optical data [19]. It was shown there that the structure
of the accompanying zero-phonon line could be explained in terms of the effects of spin–
orbit coupling as a second-order perturbation through the soRFs [20, 21]. However, although
the literature contains many examples of JT effects in such systems, there are relatively few
other cases known in which the existence of a T ⊗ t JT systems has been clearly verified.
One basic problem is that the appearance of soRFs often complicates the interpretation of the
experimental data. This emphasizes the importance of our study.

We consider now the general determination of soRFs for the T ⊗ t system. The
Hamiltonian given in equation (1) applies with � = T and γ = 4, 5, 6. Thus Qi (i = 4–6)
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are the usual collective displacements of the t2-mode. In the cubic x, y, z basis, the matrices
of the C�γ operators within the T2 orbital ground states are

CT2x =
( 0 0 0

0 0 −√
3/2

0 −√
3/2 0

)
; CT2y =

( 0 0 −√
3/2

0 0 0
−√

3/2 0 0

)

CT2z =
( 0 −√

3/2 0
−√

3/2 0 0
0 0 0

)
; CT20 =

( 1 0 0
0 1 0
0 0 1

)
.

(18)

(Note that the factor
√

3/2 has been included in the above �γ matrices for later convenience.)
A four-dimensional APES is thus formed comprising the energy (along the vertical axis) and
the three-t2 displacement coordinates Q4, Q5 and Q6. Within this space, the lowest APES
contains four minima (or wells) labelled p = 1–4 centred on Qi = Q0p , as discussed in
standard texts (e.g. [2, 8]). To a first approximation, the vibrational states within each well are
equally spaced with a separation h̄ωT . The ground |ψ ′p〉 and excited electronic states |e p

1 〉 and
|e p

2 〉 in each well are well known (see, for example, [2, 4, 22, 23]).
The energy gap between the ground and doublet excited vibronic states is thus

�Evert = 3ET t
JT ≡ 4K 2

T

h̄ωT
(19)

with −ET t
JT defined as the JT energy, and where a new coupling constant KT has been defined

by

K 2
T = 3V 2

T h̄

8µωT
. (20)

In our previous work describing the FC approximation for soRFs [10], we replaced the vibronic
well state |ψ ′p; 0〉 by the product

|ψ ′p; 0〉 = |ψ ′p〉|0〉 (21)

where |0〉 is the associated three-dimensional oscillator wavefunction centred about Q = Q0p .
The nuclear frame wavefunction is thus given by

|0〉 =
(

2τ

π

)1/4

exp[−τqp
2] (22)

with τ = µωT /(2h̄).
We take spin–orbit coupling as our perturbation. It is then necessary to use the appropriate

CG coefficients for a T1-type of perturbation within the T1 orbital triplet. In this case, there
are in principle four soRFs, as the label M ∈ T1 ⊗ T1 = A1 ⊕ E ⊕ T1 ⊕ T2.Within the Born–
Oppenheimer approximation, the adiabatic electron wavefunctions are frozen at the bottom of
the corresponding minima. The FC values are then obtained from the Green operator given by
equation (10). An important advantage of this approach is that we work with the limited size
for the electron basis functions and not with the infinite basis of the vibrational states as in [6]
so that the problem in the strong coupling limit is solvable in simple terms. The FC values
obtained are thus given by

K (2)
A (T1 ⊗ T1) = − 1

3ET t
JT

K (2)
T2
(T1 ⊗ T1) = − 2

9ET t
JT

K (2)
T1
(T1 ⊗ T1) = 0 K (2)

E (T1 ⊗ T1) = 0
(23)

and agree with those obtained previously by analytical methods [12]. It should be noted that all
the contributions to the above soRF come from the identity operator when the Green operator
is simplified with the closure relation [10, 16].
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The next stage in the analysis is to introduce the non-Condon corrections to the above
FC values as discussed in the previous section. However, at the same time it is necessary to
include the effects of anisotropy in the problem as their origin closely follows that of the non-
Condon correction. The anisotropy arises here because the wells in the lowest APES sheet have
trigonal symmetry so that they are not isotropic. Thus the oscillators in the wells have different
vibrational frequencies in different directions. The cubic coordinates in a well should thus be
re-classified in terms of a trigonal singlet mode and a trigonal doublet mode with associated
oscillator frequencies ωA and ωE , respectively. Previous calculations involving anisotropy in
the T ⊗ t2 JT system [15, 24, 25] have shown that the effective oscillator frequencyωA = ωT

for the soRF K (2)
A (T1 ⊗ T1) but that for the soRF K (2)

T2
(T1 ⊗ T1) is ωE = √

2/3ωT . A more
detailed general discussion of the effects of anisotropy in JT systems has been given very
recently in Dunn et al [26].

The corrections to the soRFs from the non-Condon perturbation U1 are readily obtained
using equation (16) and the corrected electronic ground states in the wells. The results obtained
for the soRF of A-symmetry and for one of the components for each of T2 and E-symmetries
including the anisotropy corrections are

K (2)
A (T1 ⊗ T1) = − 1

3ET t
JT

− µh̄2ω4
T

96K 4
T

〈0|q2
4 + q2

5 + q2
6 |0〉 = − 1

3ET t
JT

− h̄ωT

36ET t
JT

2

K (2)
T2
(T1 ⊗ T1) = − 2

9ET t
JT

+
µh̄2ω4

T

216K 4
T

〈0|q2
4 + q2

5 − 2q2
6 |0〉 = − 2

9ET t
JT

K (2)
E (T1 ⊗ T1) = µh̄2ω4

T

288K 4
T

〈0|q2
4 + q2

5 − 2q2
6 |0〉 = 0

K (2)
T1
(T1 ⊗ T1) = 0.

(24)

The matrix elements in the above expressions involve symmetry-related combinations of the
displacements qp. These have then been replaced by the expectation value 〈q2

p〉 over the
oscillator ground states, namely h̄

2µωT
in this case. It can be seen that the only non-zero non-

Condon corrections are to the soRF of A-symmetry. However, the correction is proportional
to 1/(ET t

JT )
2 which results in a significant modification to the original FC value. (Note that the

detailed expressions given in equation (24) are corrected from those given previously in [10].)
The soRFs of A and T2 symmetries are shown in figures 2 and 3, respectively, as a

function of the coupling strength KT , and figure 4 shows an alternative plot in the form K 2
T K 2

M
for M = A. (With this choice of label for the vertical axis, the standard FC values are
represented by horizontal straight lines as seen, for example, in figure 4.) Also included in
these figures are the original analytical calculations of Bates et al [12] (which also included the
anisotropy corrections) together with the numerical results of O’Brien [11]. Figures 2 and 4
clearly show that the non-Condon corrections to the soRFs of A symmetry give values of the
soRFs which are significantly closer to the numerical results in the strong coupling regime and
thus the inclusion of the non-Condon corrections represents an improvement on the standard
FC results for this simple cubic system [10]. These results also indicate that the neglect of
the mixing of the excited well states by the non-Condon correction is valid. They are also an
improvement on the analytical calculations [12] in the strong coupling regime because they
avoid the over counting of the excited states inherent in that work.

5. Non-Condon corrections for T ⊗ h JT systems

The icosahedral T1u ⊗ hg JT system is generally regarded as a suitable model to describe the
vibronic properties of the ground state of the C−

60 molecular ion [3]. In this case, the single
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Figure 2. Comparative plots of the soRF K (2)
A1
(T1 ⊗ T1) as a function of KT and in units of

h̄ωT for the T ⊗ t JT system, showing the results of the analytical calculation based on the shift-
transformation method (�) [12], the numerical calculation (•) [11] and this work (�) including
non-Condon corrections.

Figure 3. As figure 2 but for the soRF K (2)
T2
(T1 ⊗ T1).

electron attached to the C60 cage is coupled to the vibrations of the cage itself rather than to
the surrounding lattice. An analytical model for this system was developed in [27] in which
both linear and quadratic vibronic coupling was considered. When linear vibronic coupling
is considered alone, a trough in the lowest APES was found. Dunn et al [28] have shown,
for example, how the motion of the system in the five-dimensional coordinate space may be
decomposed into vibrations in three directions perpendicular to the trough and rotations in the
two directions around the trough. The addition of quadratic coupling generates wells in the
trough [27] and it is this aspect of the problem which is our prime concern in this paper.

Calculations of the soRFs were presented in [6], assuming the presence of linear coupling
terms only. The role of the quadratic terms was merely to generate either six pentagonal D5d
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Figure 4. As figure 2 but plotting K 2
T K (2)

A1
rather than K (2)

A1
.

wells or ten trigonal D3d wells in the lowest APES in order to represent more closely a real
system. A set of symmetry-adapted states were determined for each case and were used as a
basis to calculate analytical expressions of the soRFs in these systems using the ST method.
In the latter calculations, an infinite set of vibronic states in each well was used so that the
expressions found were expected to cover the whole range of coupling strengths. The limiting
case of strongly coupled systems was considered later by using the FC approximation [10].
The FC-values for the soRFs K (2)

M (T1 ⊗ T1) were generally found to be smaller than those
estimated from the ST method in the strong coupling limit by factors of 5/2 and 3/2 for the D5d

and D3d type wells, respectively. Possible factors to account for the differences in the results
obtained with the two approaches were discussed, such as the neglect of anisotropy in the FC
calculations. This could be an important omission but it is unlikely to give a correction of the
required magnitude. A further correction arising from the T2 excited tunnelling states is also
likely to be unimportant as at moderately strong coupling this tunnelling state is well separated
from the ground vibronic triplet. We thus suppose that the most important correction arises
from the non-Condon correction to the FC calculations as discussed above in section 3.

We now consider the non-Condon corrections for this T ⊗h JT system. Our starting point
is equation (1) with V� → VH and ω → ωH . The matrices of the CG coefficients CH i are
given explicitly in [6] so that the potential energy part of equation (1) becomes

HT h =
[ ∑

i=θ,ε,4,5,6
1
2µω

2
H Q2

i + VH Qi CH i

]
. (25)

In terms of the coupling constant KH = −VH

√
h̄/

√
2µωH , [6] the JT energy ET h

JT is given
by [10]

ET h
JT = 2K 2

H

5h̄ωH
. (26)

From this equation, we obtain an expression for U1 and follow the details presented above in
section 3. The additional information required consists of the coordinates of the centres of
the D3d and D5d wells which are given in [27], for example, and expressions for the doublet
excited electronic states |e p

m〉 for both types of wells. The latter are given in table 1 of [29],
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for example. Each well has a singlet electronic ground state and an excited doublet and their
separation is thus �Evert = 3ET h

JT .
Following the procedures given in [10] but modified as given above, expressions for the

soRFs including the non-Condon corrections for the T ⊗ h JT system have been found for
D5d and the D3d wells separately. We recall that M = A, H in the soRF K (2)

M (T1 ⊗ T1) and
M = A, T1 and two H -type components (now labelled Ha and Hb) in the soRF K (2)

M (H ⊗ H ).
(We note that Ha and Hb cannot be distinguished on symmetry grounds.) In this system, the
averages 〈q2

p〉 evaluate to h̄/(2µωH ).
The soRFs involving the perturbations (T1 ⊗ T1) are, for D5d wells,

K (2)
A (T1 ⊗ T1)D5d = − 1

3ET h
JT

− h̄ωH

12ET h
JT

2

K (2)
H (T1 ⊗ T1)D5d = − 2

15ET h
JT

(27)

and for D3d wells,

K (2)
A (T1 ⊗ T1)D3d = − 1

3ET h
JT

− h̄ωH

12ET h
JT

2

K (2)
H (T1 ⊗ T1)D3d = − 2

15ET h
JT

(28)

where the suffices D5d and D3d label the well symmetries.
Similarly, for perturbations (H ⊗ H ) for which the five matrices of the CG coefficients

are given by equation (30) in [13], the results for D5d wells are

K (2)
A (H ⊗ H )D5d = − 1

5ET h
JT

− h̄ωH

20ET h
JT

2

K (2)
Ha
(H ⊗ H )D5d = − 2

15ET h
JT

+
2h̄ωH

45ET h
JT

2

K (2)
Hb
(H ⊗ H )D5d = +

2

25ET h
JT

− 2h̄ωH

25ET h
JT

2

(29)

and the results for D3d wells are:

K (2)
A (H ⊗ H )D3d = − 1

5ET h
JT

− h̄ωH

20ET h
JT

2

K (2)
Ha
(H ⊗ H )D3d = − 2

135ET h
JT

− 2h̄ωH

81ET h
JT

2

K (2)
Hb
(H ⊗ H )D3d = − 2

15ET h
JT

+
2h̄ωH

45ET h
JT

2 .

(30)

Unlike the case of the T ⊗ t2 JT system, no anisotropy corrections have been included in
any of the above expressions for the soRFs in the T ⊗ h JT system. The effects of anisotropy
in the T ⊗ h JT system have been studied by evaluating the curvature associated with the D3d

and D5d minima when quadratic coupling is included in the analysis [30, 31]. The frequencies
of the local vibrational modes were obtained as a function of the strength of the quadratic
coupling constants in the strong linear coupling limit for both types of wells. The original
five-fold degenerate oscillators associated with the wells are split into one singlet and two
doublets. Further work [29] extended the earlier calculations to less strongly coupled JT
systems. However, even with the simplest approximation cited above, it is not straightforward
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Figure 5. The calculated values of the soRFs K (2)
M (T1 ⊗ T1) as a function of the vibronic coupling

coefficient K H , in units of h̄ωH , for D5d wells in the T ⊗ h JT system. The values obtained by
including the non-Condon corrections described here (designated by the suffices nC) and from the
original ST approximation (designated by the suffices ST) are both shown.

Figure 6. As figure 5 but for the soRFs K (2)
M (H ⊗ H ).

to insert the corrections to the frequencies in the formulae of the soRFs given above, unlike
the case of the T ⊗ t JT system. As these corrections involve the quadratic coupling constants
only, they are small [30].

There are many sets of graphs which can be produced to take into account simultaneously
the two types of minima, the two combinations of perturbation [(H ⊗ H ) and (T1 ⊗ T1)]
and the different values of M . Further complications can occur with mixed perturbations
such as T1 ⊗ H , and because the two components Ha and Hb are not uniquely defined. A
few typical results are illustrated in figures 5–8 showing the dependence of the soRFs on the
vibronic coupling coefficient KH for values of KH > h̄ωH ; other graphs for other soRFs
can usually be obtained directly from the formulae given above. The new graphs shown
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Figure 7. As figure 5 but for D3d wells.

Figure 8. As figure 6 but for D3d wells.

here containing the non-Condon corrections can be compared directly with the original ST
analytical calculations [7] which are reproduced in the figures.

As anticipated from above, the soRFs containing the non-Condon corrections to the
Franck–Condon calculations are generally significantly smaller in magnitude than those
obtained from the ST approximation alone for large KH but their relative importance decreases
rapidly with increasing KH . Nevertheless, the terms generated by the soRFs in the effective
Hamiltonian for any T ⊗ h JT system make significant contributions in those regions in which
real systems are expected to fall. They thus are important in any modelling of experimental
data.

6. Discussion

The initial aim of this work was to take the simplest of the possible non-Condon corrections
to the standard FC calculations to see if the gap between the numerical calculations of
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O’Brien [11], the analytical calculations of Bates et al [12] and the FC limiting values could be
reduced for the T ⊗ t2 JT system. This work represents an improved and corrected version of
our preliminary work on this subject described in [10]. The new results obtained and shown in
figures 2 and 4 show clearly that the non-Condon corrections indeed give final results closer to
the numerical work of O’Brien [11]. Thus the non-Condon corrections are a valid improvement
on the standard FC results and provide an accurate estimate of the second-order RFs for this
system in strong vibronic coupling for which KT > h̄ωT .

The main part of this work was to extend our calculations of RFs, particularly those of
second order to icosahedral JT systems. The simplest of these is T ⊗ h which has direct
relevance to the ground state of the C−

60 molecular ion. Thus the non-Condon correction to the
soRFs in this system were obtained, and some of the results have been presented in figures 5–
8. The strong coupling limit of the soRFs in these systems have been calculated following
the shift-transformation method [7] and the Franck–Condon approximation [2]. The non-
Condon corrections lift the assumption of rigid electronic wavefunctions that are assumed in
the standard FC approximation. They provide a way for the vibronic wavefunctions to adjust to
the effects of electronic perturbations up to and including those of second order. This concept
is based on ideas that are similar to those involved in Raman scattering in optical spectra. The
comparison made between these different methods has shown that the soRFs are now available
and valid from very strong vibronic to intermediate coupling for these systems.

The overall aim of our work is to give a comprehensive account of the basic theory of
icosahedral JT systems and thus provide a framework to enable the modelling of real systems
to be undertaken. As pointed out earlier, the development of the JT theory for magnetic ion
impurities in semiconducting and insulating host crystals provided a most significant step in our
understanding of these systems. In turn, this provided much of the basis for the manufacture of
device material as well as the contributions to basic science. However, we note that many years
passed before JT models in cubic systems could be used with much confidence. Studies of
icosahedral systems have had a much shorter history and are usually much more complicated
than those of cubic symmetry in terms of interpreting the experimental data. Also, the latter
are not usually in a form directly relevant to the theory, and much further work is needed to
enable a valid comparison to be made. Here, we have concentrated on the T ⊗ h JT system
as it is the simplest icosahedral system and it is applicable to the ground state of the C60

molecular anion. However, in the modelling of experimental data of the excited states of C60

and of multi-electron and/or multi-hole doped fullerene ions [32, 33], it is necessary to also
develop equivalent theoretical models for all the other linear icosahedral systems (such as
G ⊗ (g ⊕ h) and H ⊗ (g ⊕ h)). They are also expected to have a role to play in the study
of phase transitions and co-operative JT effects in some fullerene solids [34]. A catalogue of
theoretical information can now be assembled to assist in the identification of the system being
studied.
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